

Characterization of Crosstalk in CMUTs

Baris Bayram, Mario Kupnik, Göksen G. Yaralioglu, Dersong Lin, Ali Fatih Sarioglu, A. Sanli Ergun, Ömer Oralkan, and Butrus (Pierre) T. Khuri-Yakub

Edward L. Ginzton Laboratory
IEEE Ultrasonics Symposium 2005

Outline

1. CMUT specifications, measurement setup and two methods (optical vs. electrical) to measure crosstalk signals.

- 2. Crosstalk analysis in wavenumber-frequency domain:
 - Identification of different crosstalk contributions;
 - Conventional operation mode with/ without PDMS;
 - Collapse operation mode with/ without PDMS.

A 1D-linear CMUT array was used for crosstalk characterization

Optical interferometry versus measuring the received voltage of each element of the array immersed in oil (Verification)

Center element was excited; the electrical and optical measurements were performed simultaneously

Direct comparison of optical and electrical signal shapes (crosstalk) show good agreement

Displacement of one cell in element 10.

Received signal of **all** cells in element 10.

CMUT array was immersed in oil

Corrections for

- refractive index;
- acousto-optic effect are required.

In the 2D time-spatial domain different wave velocities are evident

Compared to an array of piezoelectric composite material the CMUT seems to show less crosstalk

D. Certon, et al, *Influence of acousto-optic interaction on the determination of the diffracted field by an array obtained from displacement measurements*, Ultrasonics, vol. 42, pp. 465-471, 2004.

The k-o domain provides a powerful analysis of the propagating multimode waves

What is the effect of a 5-µm thick PDMS layer?

Changing from conventional to collapse operation mode mainly affects the dispersive guided mode

A CMUT array covered with a 5-µm thick PDMS layer, operated in collapse operation mode, shows superior crosstalk supression

Conclusion

 Dispersive guided modes (1500 - 800 m/s) are the main reason for crosstalk in CMUT arrays

 Interface and surface waves do not play a significant role concerning crosstalk effects in CMUTs.

 Collapse operation mode reduces crosstalk, especially when the CMUT is covered with a PDMS layer.